Agreeing to Disagree

Wessel Bruinsma

20 December 2019

Image from relativelyinteresting.com/win-argument-according-science/.

Image from relativelyinteresting.com/win-argument-according-science/.

Image from relativelyinteresting.com/win-argument-according-science/.

Contents

I. A Model of Knowledge
II. The Exciting Bit
III. Questioning our Assumptions
IV. Conclusion

A Model of Knowledge

Alice's World

Alice's World (2)

$P(\omega) \subseteq E:$ at ω, Alice knows E.

Alice's World (2)

$P(\omega) \subseteq E:$ at ω, Alice knows E.

Alice's knowledge function:
$K(E)=\{\omega$: Alice knows $E\}$.

The Rare Die

The Rare Die

The Rare Die

The Rare Die

The Rare Die

Common Knowledge
$\omega \in K_{\text {Alice }}(E)$:
Alice knows E.

Common Knowledge

$\omega \in K_{\text {Alice }}(E)$:
Alice knows E.
$\omega \in K_{\text {Bob }}\left(K_{\text {Alice }}(E)\right)$:
Bob knows that Alice knows E.

Common Knowledge

$\omega \in K_{\text {Alice }}(E)$:
Alice knows E.
$\omega \in K_{\text {Bob }}\left(K_{\text {Alice }}(E)\right):$
Bob knows that Alice knows E.
$\omega \in K_{\text {Alice }}\left(K_{\text {Bob }}\left(K_{\text {Alice }}(E)\right)\right)$:
Alice knows that Bob knows that Alice knows E.

Common Knowledge

$\omega \in K_{\text {Alice }}(E)$:
Alice knows E.
$\omega \in K_{\text {Bob }}\left(K_{\text {Alice }}(E)\right)$:
Bob knows that Alice knows E.
$\omega \in K_{\text {Alice }}\left(K_{\text {Bob }}\left(K_{\text {Alice }}(E)\right)\right)$:
Alice knows that Bob knows that Alice knows E.

At ω, E is common knowledge between Alice and Bob.

The Rare Die (2)

The Exciting Bit

Aumann's Agreement Theorem

- Alice and Bob have a common prior μ.

Aumann's Agreement Theorem

- Alice and Bob have a common prior μ.
- Alice's belief about some event $E: \mu\left(E \mid P_{\text {Alice }}(\omega)\right)$.

Aumann's Agreement Theorem

- Alice and Bob have a common prior μ.
- Alice's belief about some event $E: \mu\left(E \mid P_{\text {Alice }}(\omega)\right)$.

Theorem (Aumann (1976))

If $\mu\left(E \mid P_{\text {Alice }}(\omega)\right)$ and $\mu\left(E \mid P_{\text {Bob }}(\omega)\right)$ are common knowledge between Alice and Bob, then these beliefs must be equal.

Aumann's Agreement Theorem

- Alice and Bob have a common prior μ.
- Alice's belief about some event $E: \mu\left(E \mid P_{\text {Alice }}(\omega)\right)$.

Theorem (Aumann (1976))

If $\mu\left(E \mid P_{\text {Alice }}(\omega)\right)$ and $\mu\left(E \mid P_{\text {Bob }}(\omega)\right)$ are common knowledge between Alice and Bob, then these beliefs must be equal.

- Alice and Bob cannot agree to disagree.

Aumann's Agreement Theorem: Sketch of Proof

Aumann's Agreement Theorem: Sketch of Proof

- F is self evident if Alice knows it whenever it occurs.

Aumann's Agreement Theorem:

 Sketch of Proof- F is self evident if Alice knows it whenever it occurs.

Proposition

At ω, E is common knowledge between Alice and Bob iff there exists an event $\omega \in F \subseteq E$ that is self evident for both Alice and Bob.

Aumann's Agreement Theorem:

 Sketch of Proof- F is self evident if Alice knows it whenever it occurs.

Proposition

At ω, E is common knowledge between Alice and Bob iff there exists an event $\omega \in F \subseteq E$ that is self evident for both Alice and Bob.

$$
E=\text { Alice and Bob have beliefs: } q_{\text {Alice }} \text { and } q_{\text {Bob }} \text {. }
$$

Aumann's Agreement Theorem:

 Sketch of Proof- F is self evident if Alice knows it whenever it occurs.

Proposition

At ω, E is common knowledge between Alice and Bob iff there exists an event $\omega \in F \subseteq E$ that is self evident for both Alice and Bob.

- $F \subseteq E=$ Alice and Bob have beliefs: $q_{\text {Alice }}$ and $q_{\text {Bob }}$.

Aumann's Agreement Theorem:

 Sketch of Proof- F is self evident if Alice knows it whenever it occurs.

Proposition

At ω, E is common knowledge between Alice and Bob iff there exists an event $\omega \in F \subseteq E$ that is self evident for both Alice and Bob.

- $F \subseteq E=$ Alice and Bob have beliefs: $q_{\text {Alice }}$ and $q_{\text {Bob }}$.
- $\mu(E \mid F)=q_{\text {Alice }}$.

Aumann's Agreement Theorem:

 Sketch of Proof- F is self evident if Alice knows it whenever it occurs.

Proposition

At ω, E is common knowledge between Alice and Bob iff there exists an event $\omega \in F \subseteq E$ that is self evident for both Alice and Bob.

- $F \subseteq E=$ Alice and Bob have beliefs: $q_{\text {Alice }}$ and $q_{\text {Bob }}$.
- $\mu(E \mid F)=q_{\text {Alice }}$.
- $\mu(E \mid F)=q_{\text {Bob }}$.

Aumann's Agreement Theorem:

 Sketch of Proof- F is self evident if Alice knows it whenever it occurs.

Proposition

At ω, E is common knowledge between Alice and Bob iff there exists an event $\omega \in F \subseteq E$ that is self evident for both Alice and Bob.

- $F \subseteq E=$ Alice and Bob have beliefs: $q_{\text {Alice }}$ and $q_{\text {Bob }}$.
- $\mu(E \mid F)=q_{\text {Alice }}$.
- $\mu(E \mid F)=q_{\text {Bob }}$.
- $q_{\text {Alice }}=q_{\text {Bob }}$.

Disagreement is Unpredictable

- Alice's estimate of some random variable X :

$$
\mathbb{E}_{\text {Alice }}(X)=\mathbb{E}\left(X \mid P_{\text {Alice }}(\omega)\right)
$$

Disagreement is Unpredictable

- Alice's estimate of some random variable X :

$$
\mathbb{E}_{\text {Alice }}(X)=\mathbb{E}\left(X \mid P_{\text {Alice }}(\omega)\right)
$$

- Consider future Bob: Bob^{\prime}.

Disagreement is Unpredictable

- Alice's estimate of some random variable X :

$$
\mathbb{E}_{\text {Alice }}(X)=\mathbb{E}\left(X \mid P_{\text {Alice }}(\omega)\right)
$$

- Consider future Bob: Bob'.
- Future Bob's estimate: $\mathbb{E}_{\mathrm{Bob}^{\prime}}(X)$.

Disagreement is Unpredictable

- Alice's estimate of some random variable X :

$$
\mathbb{E}_{\text {Alice }}(X)=\mathbb{E}\left(X \mid P_{\text {Alice }}(\omega)\right)
$$

- Consider future Bob: Bob^{\prime}.
- Future Bob's estimate: $\mathbb{E}_{\mathrm{Bob}^{\prime}}(X)$.
- Alice's estimate of future Bob's estimate: $\mathbb{E}_{\text {Alice }}\left(\mathbb{E}_{\text {Bob }^{\prime}}(X)\right)$.

Disagreement is Unpredictable

- Alice's estimate of some random variable X :

$$
\mathbb{E}_{\text {Alice }}(X)=\mathbb{E}\left(X \mid P_{\text {Alice }}(\omega)\right) .
$$

- Consider future Bob: Bob'.
- Future Bob's estimate: $\mathbb{E}_{\text {Bob }^{\prime}}(X)$.
- Alice's estimate of future Bob's estimate: $\mathbb{E}_{\text {Alice }}\left(\mathbb{E}_{\text {Bob }^{\prime}}(X)\right)$.

$\mathbb{E}_{\text {Alice }}\left(\mathbb{E}_{\text {Bob }^{\prime}}(X)\right)<\mathbb{E}_{\text {Alice }}(X)$

Disagreement is Unpredictable

- Alice's estimate of some random variable X :

$$
\mathbb{E}_{\text {Alice }}(X)=\mathbb{E}\left(X \mid P_{\text {Alice }}(\omega)\right)
$$

- Consider future Bob: Bob'.
- Future Bob's estimate: $\mathbb{E}_{\mathrm{Bob}^{\prime}}(X)$.
- Alice's estimate of future Bob's estimate: $\mathbb{E}_{\text {Alice }}\left(\mathbb{E}_{\text {Bob }^{\prime}}(X)\right)$.

Theorem (Hanson (2002))

It cannot be that $\mathbb{E}_{\text {Alice }}\left(\mathbb{E}_{\text {Bob }^{\prime}}(X)\right)<\mathbb{E}_{\text {Alice }}(X)$ (or " $>^{\text {" }}$) is common knowledge between Alice and Bob.

Disagreement is Unpredictable

- Alice's estimate of some random variable X :

$$
\mathbb{E}_{\text {Alice }}(X)=\mathbb{E}\left(X \mid P_{\text {Alice }}(\omega)\right) .
$$

- Consider future Bob: Bob'.
- Future Bob's estimate: $\mathbb{E}_{\mathrm{Bob}^{\prime}}(X)$.
- Alice's estimate of future Bob's estimate: $\mathbb{E}_{\text {Alice }}\left(\mathbb{E}_{\text {Bob }^{\prime}}(X)\right)$.

Theorem (Hanson (2002))

It cannot be that $\mathbb{E}_{\text {Alice }}\left(\mathbb{E}_{\mathrm{Bob}^{\prime}}(X)\right)<\mathbb{E}_{\text {Alice }}(X)$ (or " $>^{\text {" }}$) is common knowledge between Alice and Bob.

- Alice cannot anticipate the direction of Bob's disagreement.

Image from relativelyinteresting.com/win-argument-according-science/.

Questioning our Assumptions

The Common Prior Assumption

Do we really have a common prior?

Principle of Monotonicity

$$
F \subseteq E \Longrightarrow K(F) \subseteq K(E)
$$

Principle of Monotonicity

$$
F \subseteq E \Longrightarrow K(F) \subseteq K(E) .
$$

K (know axioms $) \subseteq K($ know theorems $)$.

Principle of Substitution

$$
F=E \Longrightarrow K(F)=K(E)
$$

Principle of Substitution

$$
F=E \Longrightarrow K(F)=K(E)
$$

$K($ triangle is equilateral $)=K($ triangle is equiangular $)$.

Principle of Substitution

$$
F=E \Longrightarrow K(F)=K(E) .
$$

$K($ triangle is equilateral $)=K($ triangle is equiangular $)$.

Extension Versus Intension

$$
F=E ?
$$

Extension Versus Intension

$$
F=E ?
$$

- Extension: what an expression designates.
- Intension: the idea or notion conveyed.

Extension Versus Intension

$$
F=E ?
$$

- Extension: what an expression designates.
- Intension: the idea or notion conveyed.

The state-space model of knowledge respects extensional equality, but disregards the intentional dimension.
"We publish this observation with some diffidence, since once one has the appropriate framework, it is mathematically trivial. Intuitively, though, it is not quite obvious..."
—Aumann, in his original paper (Aumann, 1976)

Conclusion

Image from relativelyinteresting.com/win-argument-according-science/.

Conclusion

- Common prior

Image from relativelyinteresting.com/win-argument-according-science/.

Conclusion

- Common prior
- Accept model of knowledge

Image from relativelyinteresting.com/win-argument-according-science/.

Conclusion

- Common prior
- Accept model of knowledge

Image from relativelyinteresting.com/win-argument-according-science/.

Appendix

References

Aumann, R. J. (1976). Agreeing to disagree. Annals of Statistics, 4(6), 1236-1239.

Hanson, R. (2002). Disagreement is unpredictable. Economics Letters, 77(3), 365-369.

