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P (ω) ⊆ E:
at ω, Alice knows E.

Alice’s knowledge function:
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• Alice and Bob have a common prior µ.

• Alice’s belief about some event E: µ(E |PAlice(ω)).

Theorem (Aumann (1976))

If µ(E |PAlice(ω)) and µ(E |PBob(ω)) are common knowledge
between Alice and Bob, then these beliefs must be equal.

• Alice and Bob cannot agree to disagree.
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• F is self evident if Alice knows it whenever it occurs.

Proposition

At ω, E is common knowledge between Alice and Bob iff there exists
an event ω ∈ F ⊆ E that is self evident for both Alice and Bob.

•

F ⊆

E = Alice and Bob have beliefs: qAlice and qBob.
• µ(E |F ) = qAlice.
• µ(E |F ) = qBob.
• qAlice = qBob. �
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• Alice’s estimate of some random variable X:

EAlice(X) = E(X |PAlice(ω)).

• Consider future Bob: Bob′.
• Future Bob’s estimate: EBob′(X).
• Alice’s estimate of future Bob’s estimate: EAlice(EBob′(X)).

Theorem (

Hanson (2002)

)

It cannot be that

EAlice(EBob′(X)) < EAlice(X)

(or ''> '') is
common knowledge between Alice and Bob.

• Alice cannot anticipate the direction of Bob’s disagreement.
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Do we really have a common prior?
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“We publish this observation with some diffidence, since once
one has the appropriate framework, it is mathematically trivial.
Intuitively, though, it is not quite obvious...”

—Aumann, in his original paper (Aumann, 1976)
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